Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions.

نویسندگان

  • Joao M Correia
  • Bernadette M B Jansma
  • Milene Bonte
چکیده

UNLABELLED The brain's circuitry for perceiving and producing speech may show a notable level of overlap that is crucial for normal development and behavior. The extent to which sensorimotor integration plays a role in speech perception remains highly controversial, however. Methodological constraints related to experimental designs and analysis methods have so far prevented the disentanglement of neural responses to acoustic versus articulatory speech features. Using a passive listening paradigm and multivariate decoding of single-trial fMRI responses to spoken syllables, we investigated brain-based generalization of articulatory features (place and manner of articulation, and voicing) beyond their acoustic (surface) form in adult human listeners. For example, we trained a classifier to discriminate place of articulation within stop syllables (e.g., /pa/ vs /ta/) and tested whether this training generalizes to fricatives (e.g., /fa/ vs /sa/). This novel approach revealed generalization of place and manner of articulation at multiple cortical levels within the dorsal auditory pathway, including auditory, sensorimotor, motor, and somatosensory regions, suggesting the representation of sensorimotor information. Additionally, generalization of voicing included the right anterior superior temporal sulcus associated with the perception of human voices as well as somatosensory regions bilaterally. Our findings highlight the close connection between brain systems for speech perception and production, and in particular, indicate the availability of articulatory codes during passive speech perception. SIGNIFICANCE STATEMENT Sensorimotor integration is central to verbal communication and provides a link between auditory signals of speech perception and motor programs of speech production. It remains highly controversial, however, to what extent the brain's speech perception system actively uses articulatory (motor), in addition to acoustic/phonetic, representations. In this study, we examine the role of articulatory representations during passive listening using carefully controlled stimuli (spoken syllables) in combination with multivariate fMRI decoding. Our approach enabled us to disentangle brain responses to acoustic and articulatory speech properties. In particular, it revealed articulatory-specific brain responses of speech at multiple cortical levels, including auditory, sensorimotor, and motor regions, suggesting the representation of sensorimotor information during passive speech perception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Word identification using phonetic features: towards a method to support multivariate fMRI speech decoding

Nowadays, using state of the art multivariate machine learning approaches, researchers are able to classify brain states from brain data. One of the applications of this technique is decoding phonemes that are being produced from brain data in order to decode produced words. However, this approach has been only moderately successful. Instead, decoding articulatory features from brain data may b...

متن کامل

Sensorimotor Representation of Speech Perception. Cross-Decoding of Place of Articulation Features during Selective Attention to Syllables in 7T fMRI

Sensorimotor integration, the translation between acoustic signals and motoric programs, may constitute a crucial mechanism for speech. During speech perception, the acoustic-motoric translations include the recruitment of cortical areas for the representation of speech articulatory features, such as place of articulation. Selective attention can shape the processing and performance of speech p...

متن کامل

Multisensory and modality specific processing of visual speech in different regions of the premotor cortex

Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action ("Mirror System" properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features o...

متن کامل

The Hierarchical Cortical Organization of Human Speech Processing.

Speech comprehension requires that the brain extract semantic meaning from the spectral features represented at the cochlea. To investigate this process, we performed an fMRI experiment in which five men and two women passively listened to several hours of natural narrative speech. We then used voxelwise modeling to predict BOLD responses based on three different feature spaces that represent t...

متن کامل

Articulatory Features and Associated Production Models in Statistical Speech Recognition

A statistical approach to speech recognition is outlined which draws close parallel with closed-loop human speech communication schematized as a joint process of encoding and decoding of linguistic messages. The encoder consists of the symbolically-valued overlapping articulatory feature model and of its interface to a nonlinear task-dynamic model of speech production. A general speech recogniz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 45  شماره 

صفحات  -

تاریخ انتشار 2015